Non-commutative Extensions of Two-dimensional Topological Field Theories and Hurwitz Numbers for Real Algebraic Curves

نویسندگان

  • A. ALEXEEVSKI
  • S. NATANZON
چکیده

Contents 1. Introduction 1 2. Structure algebra 4 2.1. Definition of a structure algebra 4 2.2. Semisimple structure algebras 7 2.3. Structure algebra of a finite group 11 3. Cuts of stratified surfaces 15 3.1. Stratified surfaces 15 3.2. Cut systems 17 3.3. Basic and simple surfaces 21 3.4. Neighboring complete cut systems 25 4. Two-dimensional topological field theory 29 4.1. Definition of Klein topological field theory 29 4.2. Correlators of Klein topological field theory 33 4.3. From system of correlators to structure algebras 38 4.4. From structure algebra to Klein topological field theory 41 5. Hurwitz topological field theory 46 5.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Noncommutative Two-dimensional Topological Field Theories and Hurwitz Numbers for Real Algebraic Curves

It is well-known that classical two-dimensional topological field theories are in one-to-one correspondence with commutative Frobenius algebras. An important extension of classical two-dimensional topological field theories is provided by open-closed two-dimensional topological field theories. In this paper we extend open-closed two-dimensional topological field theories to nonorientable surfac...

متن کامل

Topological String Theory and Enumerative Geometry

In this thesis we investigate several problems which have their roots in both topological string theory and enumerative geometry. In the former case, underlying theories are topological field theories, whereas the latter case is concerned with intersection theories on moduli spaces. A permeating theme in this thesis is to examine the close interplay between these two complementary fields of stu...

متن کامل

Realisibility of Algebraic Galois Extensions by Strictly Commutative Ring Spectra

We describe some of the basic ideas of Galois theory for commutative S-algebras originally formulated by John Rognes. We restrict attention to the case of finite Galois groups. We describe the general framework developed by Rognes. Central rôles are played by the notion of strong duality and a trace or norm mapping constructed by Greenlees and May in the context of generalized Tate cohomology. ...

متن کامل

Non-commutative Differential Calculus and the Axial Anomaly in Abelian Lattice Gauge Theories

The axial anomaly in lattice gauge theories has topological nature when the Dirac operator satisfies the Ginsparg-Wilson relation. We study the axial anomaly in Abelian gauge theories on an infinite hypercubic lattice by utilizing cohomological arguments. The crucial tool in our approach is the non-commutative differential calculus (NCDC) which validates the Leibniz rule of exterior derivatives...

متن کامل

On non-Abelian theories and Abelian differentials

I discuss integrable systems and their solutions arising in the context of supersymmetric gauge theories and topological string models. For the simplest cases these are particular singular solutions to the dispersionless KdV and Toda systems, and they produce in most straightforward way the generating functions for the Gromov-Witten classes, including well-known intersection and Hurwitz numbers...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002